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The rheology of a dilute two-dimensional suspension of vesicles (closed bags of a lipid
bilayer membrane) is studied by numerical simulations. The numerical methods used
are based on the boundary integral formulation (Green’s function technique) and the
phase field approach, which has become a quite popular and powerful tool for the
numerical study of free-boundary problems. The imposed flow is an unbounded linear
shear. The goal of the present study is to elucidate the link between the rheology of
vesicle suspensions and the microscopic dynamics of the constituent particles (tank-
treading and tumbling motions). A comparison with emulsion rheology reveals the
central role played by the membrane. In particular, at low viscosity ratio λ (defined as
the viscosity of the internal fluid over that of the ambient one), the effective viscosity
decreases with λ, while the opposite trend is exhibited by emulsions, according to
the classical Taylor result. This fact is explained by considering the velocity field
of the ambient fluid. The area-incompressibility of the vesicle membrane modifies
the surrounding velocity field in a quite different manner than what a drop does.
The overall numerical results in two dimensions are in reasonable agreement with the
three-dimensional analytical theory derived recently in the small deformation limit
(quasi-spherical shapes). The finding that the simulations in two dimensions capture
the essential features of the three-dimensional rheology opens the way for extensive
and large-scale simulations for semi-dilute and concentrated vesicle suspensions. We
discuss some peculiar effects exhibited by the instantaneous viscosity in the tumbling
regime of vesicles. Finally, the rheology is found to be relatively insensitive to shear
rate.

1. Introduction
A vesicle is a liquid drop enclosed by a phospholipid bilayer and suspended in an

aqueous solution. Vesicles are believed to represent an interesting model system for
studying the viscoelastic properties of real cells, such as red blood cells (Abkarian &
Viallat 2008; Edidin 2003). The dynamics and the rheology of vesicles are a very active
field of research nowadays, as evidenced by the large number of recent investigations:
(i) numerical (Kaoui, Biros & Misbah 2009; Maitre et al. 2009; McWhirter, Noguchi &
Gompper 2009; Veerapaneni et al. 2009), (ii) analytical (Danker, Verdier & Misbah
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2008; Finken et al. 2008; Lebedev, Turitsyn & Vergeles 2008; Danker, Vlahovska &
Misbah 2009) and (iii) experimental (Coupier et al. 2008; Kantsler, Segre & Steinberg
2008; Vitkova et al. 2008; Deschamps, Kantsler & Steinberg 2009).

While the dynamics of an isolated vesicle has received a lot of attention, vesicle
suspensions have been studied to a limited extent. This paper focuses on the flow of a
suspension of vesicles where both the internal and the suspending fluids are considered
to be Newtonian. The phospholipid molecules are free to move within the membrane,
so that the membrane has a two-dimensional liquid-like character. Like a three-
dimensional liquid, the membrane is subject to local incompressibility, i.e. constant
surface density. This reflects the optimal packing of lipids that balances electrostatic
repulsion and hydrophobic attraction between lipid molecules. In addition, the
membrane possesses a resistance to bending.

The presence of the membrane has already exhibited its importance in differentiating
the dynamics of a vesicle from that of a simple drop (see Keller & Skalak 1982; Kraus
et al. 1996; Beaucourt et al. 2004b; Kantsler & Steinberg 2005; Noguchi & Gompper
2005; Misbah 2006; Mader et al. 2006). Under shear flow a vesicle exhibits various
motions, such as (i) tank-treading (TT), in which the vesicle keeps a fixed orientation
with respect to the imposed flow direction while its (fluid) membrane undergoes a
tank-treading-like motion, (ii) tumbling (TB), in which the vesicle rotates periodically
in the shear plane, and (iii) a vacillating–breathing (or trembling, swinging), which
has been predicted by Misbah (2006) and experimentally observed by Kantsler &
Steinberg (2006): the vesicle’s main axis oscillates about the flow direction, while the
shape undergoes a breathing motion. The transition from one regime to another is
triggered by changing, for example, the viscosity ratio (ratio of the internal viscosity
over that of the suspending fluid). In contrast, a drop (at small enough shear rates so
that the drop maintains its integrity) always assumes a stationary shape. The rheology
of a dilute suspension of vesicles has been studied recently analytically (see Misbah
2006; Danker & Misbah 2007; Danker et al. 2007; Vlahovska & Gracia 2007) and
experimentally (see Kantsler et al. 2008; Vitkova et al. 2008). Analytical theories are
based on the assumption that the vesicle shape is close to a sphere. How would a
significant deviation from a sphere affect the results is an open question. A red blood
cell, for example, has, at equilibrium, a quite pronounced biconcave shape. The large
deviation from a sphere makes the extension of the analytical theory quite difficult.
Numerical simulations are a tool that allows the analysis of more complex geometries
and concentrated suspensions.

In order to extract quantitative dynamical and rheological data from numerical
simulations, attention has to be paid to time and space discretization to ensure the
convergence of the results. It turns out that the constraint of local area conservation,
crucial for vesicles, is very demanding and imposes the use of fine meshes and small
time steps. Allowing more than few percents of local area changes gives rise to
spurious dynamics, such as vacillating.

As a consequence of the area constraint, three-dimensional simulations are quite
time-consuming. Hence, as a first step we limit our study to the case of a two-
dimensional suspension. The simplicity of the two-dimensional model allows for
a clearer interpretation of the results, as compared to three dimensions. Two-
dimensional simulations exhibit similar types of behaviours as those predicted
analytically in three dimensions in the dilute regime (see Misbah 2006; Danker &
Misbah 2007; Danker et al. 2007).

The major point presented here is the clear link between the microscopic dynamics
of a vesicle and the overall rheology. In addition, we shall discuss in detail the main
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Figure 1. (a) The imposed linear shear flow and the coordinate system. (b) A tank-treading
vesicle in linear shear flow with a reduced area of α =0.7, a viscosity ratio of λ= 3 and a
capillary number Ca = 1. The dots represent a typical mesh (only half of the grid points are
shown), the tangential arrows represent the velocity field and the outward arrows represent
the force exerted by the fluid on the membrane.

differences between the behaviour of the effective viscosity for emulsions and vesicle
suspensions.

Numerical simulations are carried out by using two different methods: the boundary
integral (BI) method, which is based on the use of the Green’s function techniques,
and the phase field (PF) method. The former is nowadays a reliable standard for
simulations of deformable suspended entities, while the latter, although less precise,
is more flexible, requires less procedures to pass from a physical system to another
(like handling several suspended entities) and is applicable to more general situations,
i.e. when the basic fluid equations are not linear (e.g. non-Newtonian ambient fluids).
The use of both techniques allowed us to gain a deep insight into this problem and
thus to draw robust conclusions.

The paper is organized as follows. Section 2 describes the physical system, § 3
discusses the numerical methods and § 4 presents the results for rheology of a
dilute vesicle suspension and compares them with emulsion rheology explaining
the differences.

2. The physical system
Since our main goal is to build a basic understanding of the fundamental

phenomena linking rheology to microscopic dynamics, we make the following
simplifications. We devote this study to the simplest situation: a single two-dimensional
vesicle immersed in an unbounded linear shear flow (see figure 1). Starting from the
isolated vesicle problem, we are able to extrapolate the results to dilute suspensions,
i.e. to a finite concentration, albeit neglecting hydrodynamical interactions.

Most of the available experimental data on vesicles concern the low-Reynolds-
number limit (typically of the order of 10−3), so inertia can be neglected. It must be
remarked that while the use of the BI method requires linearity of fluid equations, the
PF method does not, and hence it can be used in the finite Reynolds number case, if
need be.

In the vanishingly small Reynolds number limit, the fluid motion inside and outside
the vesicle is described by the Stokes equations

−∇p + ηi∆u = 0 ∇ · u = 0 (2.1)
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where ηi , with i = 0, 1, is the viscosity of the external (0) or the internal (1) fluid. The
membrane, subject to the constraint of local incompressibility, is considered in two
dimensions as an inextensible and impermeable line endowed with bending resistance.
In addition, we apply no-slip boundary conditions between the membrane and both
fluids, which leads to a velocity field that is continuous everywhere in the considered
domain. The membrane forces are discussed in detail in § 3.1.

The vesicle dynamics is entirely described by three dimensionless parameters
(α, Ca, λ) (see Beaucourt, Biben & Misbah 2004a). The reduced area is defined
as

α =
A

π[p/2π]2
, (2.2)

where A is the vesicle area (volume in three dimensions) and p is the vesicle perimeter.
Also, α =1 for a circle, and α < 1 otherwise. Experimentally, the variation of α may
be achieved by osmosis: addition of sugar, for example, in the suspending solution
causes deflation of the vesicle (loss of water from inside the vesicle towards outside).
We introduce a capillary number

Ca =
τc

τu

=
η0γ̇ r3

0

κ
, (2.3)

where τc = η0r
3
0/κ is the curvature relaxation time scale, τu = γ̇ −1 is the flow time

scale, η0 is the viscosity of the suspending Newtonian fluid, γ̇ is the imposed shear
rate, κ is the bending modulus of the membrane (see Helfrich 1973) and r0 is the
radius of the equivalent circle (i.e. the radius of a circle having the same area as the
vesicle). Ca compares the strength of the imposed flow to the bending resistance of
the membrane.

Finally, a third dimensionless number enters the model equations, namely the
viscosity ratio

λ =
η1

η0

, (2.4)

which is the ratio between the viscosities of the internal and external fluids.
The rheological quantities of interest are the effective (shear) viscosity of the

solution

η ≡ 〈σxy〉
γ̇

(2.5)

and the normal stress difference

N ≡ 〈σxx〉 − 〈σyy〉
γ̇

, (2.6)

where σ is the stress tensor of the suspension – which depends on the still-unknown
vesicle conformation – and the angle bracket 〈 〉 denotes volume average. Note that
vesicles are sufficiently large to neglect Brownian motion; the typical vesicle radius is
of the order of 10 µm).

It is convenient to subtract the contribution of the imposed flow and normalize
the result by an appropriate factor, which includes the volume fraction φ of
the suspended entities, following Batchelor (1970). The imposed linear shear flow
trivially yields 〈σxy〉 = η0γ̇ and N = 0, so we have the non-dimensional reduced
quantities:

[η] ≡ 〈σxy〉 − η0γ̇

η0γ̇ φ
(2.7)
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and

[N] ≡ 〈σxx〉 − 〈σyy〉
η0γ̇ φ

, (2.8)

which will be called the reduced viscosity and reduced normal stress difference,
respectively.

The vesicle contribution to the suspension stress is linear in the volume fraction,
which expresses the fact that the effects of the vesicles sum up linearly in the
absence of hydrodynamic interaction. This kind of approach is expected to provide
quantitative results for small enough concentrations (typically � 5 %, in reference to
the experimental validity of Einstein’s result for a suspension of spherical rigid
particles, see Larson 1999), since, otherwise, we expect that the hydrodynamic
interactions can no longer be neglected.

3. The numerical methods
We use two different numerical methods to run simulations of vesicles immersed in

an external fluid: the BI and PF methods. We briefly describe both of them in the
following paragraphs.

3.1. Boundary integral method

The main idea of this method is to solve Stokes equations by means of the Green’s
function technique. The use of this method yields the velocity of the membrane,
needed for the time evolution of the suspended entities, as a function of integrals over
the various boundaries present in the considered fluid domain. For a single vesicle in
an unbounded shear flow the only boundary is that of the membrane of the vesicle
(see Pozrikidis 1992, 2001). The computation reduces from a two-dimensional problem
(fluid domain) to a one-dimensional problem (the vesicle boundary). This is done,
however, at a certain price, non-locality: the motion of a given point of the surface of
the suspended entity depends on the dynamics of the points that are located elsewhere.
The numerical solution of these equations is achieved by a discretization of the vesicle
surface, which is a line in two dimensions. Note that this method can only be used to
solve linear equations (as Stokes equations) and needs an update of the mesh during
the time evolution because of the deformation of the boundaries of the fluid domains
(see Rallison & Acrivos 1978; Kraus et al. 1996; Cantat & Misbah 1999). Moreover,
in two dimensions, the constraint of local length incompressibility on the vesicle
membrane preserves the distance between neighbouring points of the discretization,
so the mesh update can be performed with a simple Lagrangian advection.

The equation for the velocity of a point belonging to the membrane (denoted by
x0 hereafter) is (see Pozrikidis 1993; Kennedy, Pozrikidis & Skalak 1994)

u(x0) =
2

1 + λ
u∞(x0) +

1

2πη0(1 + λ)

∮
γ

G(x − x0) · f (x) ds(x)

+
2(1 − λ)

π(1 + λ)

∮
γ

u(x) · T (x − x0) · n(x) ds(x), (3.1)

where

Gij (x − x0) = −δij ln |x − x0| +
(x − x0)i(x − x0)j

|x − x0|2 , (3.2)

Tijk(x − x0) = −4
(x − x0)i(x − x0)j (x − x0)k

|x − x0|4 (3.3)
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are the Green’s functions of the problem (Gij refers to the so-called single-layer
contribution, while Tijk accounts for the double-layer contribution), u∞ represents the
imposed flow, γ is the vesicle contour and f is the membrane force, given by

f = −κ

[
d2c

ds2
+

1

2
c3

]
n + ζcn +

dζ

ds
t. (3.4)

This force is obtained from the functional derivative of the Helfrich bending energy
(Canham 1970; Helfrich 1973) including the local arclength constraint (expressing
inextensibility). The bending energy, together with the contribution due to membrane
incompressibility, has (in two dimensions) the form

E =
κ

2

∮
γ

c2ds +

∮
γ

ζds, (3.5)

where s represents the curvilinear coordinate on the contour of the vesicle, c is the
local curvature of the membrane and n and t are the outward normal and the tangent
vectors. Also, ζ is a local Lagrange multiplier associated with the constraint of local
surface (length in two dimensions) inextensibility. The expression of the membrane
force has been used in Cantat (1999), and a simple derivation can be found in the
Appendix of Kaoui et al. (2008).

For numerical reasons, the numerical scheme that is implemented in the code does
not use ζ directly, but rather a tension-like parameter, introduced as a penalty:

f = −κ

[
d2c

ds2
+

1

2
c3

]
n + T

[
(�l − �l0 )τ l + (�r − �r0 )τ r

]
, (3.6)

where (�l − �l0 ) and (�r − �r0 ) are the differences between the actual distances of a
discretization point of the membrane to its left and right neighbours and their initial
values. Likewise, τ l and τ r are the unit vectors pointing from the considered point
to the corresponding neighbours. This tension term accounts for both the tangential
and normal components of the membrane incompressibility force that enters via the
Lagrange multiplier ζ in (3.4). We can introduce a dimensionless number associated
with T and defined as CT = η0γ̇ /(r0T ). The elastic constant T is taken quite large,
so that the corresponding force is large enough to fulfil quasi-conservation of the
local length at the time scale imposed by the action of physical forces. This means
that the elastic dynamics can be considered as an effective implementation of quasi-
instantaneous local membrane incompressibility (see Cantat, Kassner & Misbah 2003)
(in practice, taking T ≈ 104, when the other relevant parameters are of order 1, is
already sufficient to reach the convergence of this scheme). More precisely, if Ca is of
order 1, then CT should be chosen small enough (typically 10−4 or smaller).

Because of the large separation of time scales, the time step has to be sufficiently
small to resolve local dynamics that occur on time scales much shorter than the
mesoscopic dynamics of the whole vesicle. An advantage of the use of the penalization
method is that we do not need to solve numerically for a Lagrange multiplier, which
should be obtained implicitly from the condition that the surface divergence of the
velocity field must vanish.

The membrane velocity is computed by evaluating the right-hand side of (3.1): we
prescribe an initial vesicle shape as well as an initial velocity on the membrane, so
that the right-hand side of (3.1) can be evaluated at initial time. Then time integration
is carried out by means of an explicit Euler scheme, in which the velocity appearing
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on the right-hand side of (3.1) is taken to be the one computed at the previous time
step. Each point on the membrane is displaced by a quantity u∆t , where ∆t is the
time step and u is the membrane velocity, and this yields the new configuration, and
so on.

The rheological properties are computed following Batchelor’s approach (see
Batchelor 1970), adapted to liquid particles as in Kennedy et al. (1994):

〈σij 〉 =
1

S

[
η0

∫
S

(∂iuj + ∂jui) dA +

∮
γ

[xjfi + η0(λ − 1)(niuj + njui)] ds

]
, (3.7)

where S denotes the bulk of the system and γ denotes the contour of the vesicle. The
first term, which is the average velocity gradient in the system, represents the stress
contribution of the imposed flow (see Schowalter, Chaffey & Brenner 1968; Batchelor
1970; Frankel & Acrivos 1970), while the second term accounts for the presence of
the vesicle. We shall thus focus on the latter contribution.

3.1.1. Numerical implementation and convergence test

BI method is very accurate and thus allows for precise quantitative results. We
have studied the numerical convergence of the code upon decreasing the time step
and increasing the number of discretization points. The method of discretization is
described by Cantat et al. (2003). It turned out that the convergence with respect
to the time step is quite fast, while the convergence with respect to the spatial
discretization n is slower: we focused then our attention on the latter. We ran four
series of simulations, with n ∈ {60, 80,120, 240}. For every series we chose a time step
for which we can consider that the time convergence is attained: (simulations with a
time step three times smaller were giving the same results within an error of 10−5).
For this convergence test we consider a vesicle with a reduced area α = 0.9 and a
capillary number Ca =1.

We have analysed the behaviour of the critical viscosity ratio λc beyond which
the vesicle undergoes a tumbling transition. It is in general quite difficult to locate
with a good enough accuracy a bifurcation point. The results are shown in figure 2.
The same quantity is also computed for n=480 (in that case we only focus on the
critical value λc, in which we do not compute the whole curves as in figure 2 because
of the rather large computing time). In figure 3, we report λc for different values
of n. In order to check the convergence by extrapolation to n= ∞, we plot λc as a
function of 1/n. It is appealing to fit the data with a parabola (see figure 3). Taking
a test function y = ax2 + d (we have omitted the linear term since the figure conveys
the impression of a quite small slope at the origin) it is found that the discrepancy
between the extrapolated value at n → ∞ (d =5.50) and the one found by the most
refined simulation ran (n= 240, λc =5.55) is about 1 %: so we can consider that our
discretization is close enough to convergence to be able to discuss the results at a
quantitative level. The time step for n= 240 is ∆t = 3 × 10−5. CPU time on a desktop
processor is of the order of hours or days – depending on the parameter values. The
perimeter is conserved within a relative error of 10−3, and the surface of 10−6.

3.2. Phase field method

This technique is traced back to van der Waals (see van der Waals 1979) and
has been widely used in the context of critical phenomena (see Hohenberg &
Halperin 1977). The method has then been used for non-equilibrium pattern-
forming solidification problems (see Penrose & Fife 1990; Kobayashi 1993; Wheeler,
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Figure 2. Boundary integral method: numerical convergence upon increasing n. (a) Stationary
inclination angle ψ , measured counterclockwise from the positive x semi-axis (when a stationary
solution exists; this is the tank-treading regime), (b) the reduced viscosity [η], and (c) the normal
stress difference N as a function of the viscosity ratio λ. The reduced area is α = 0.9 and the
capillary number Ca = 1.0. Rheological measurements of (b) and (c) have been averaged over
a period in the tumbling regime.
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Figure 3. Boundary integral method: numerical convergence of the parameter λc as a function
of 1/n. Here n ∈ {60, 80, 120, 240, 480}. The line represents the fit of the results by the function
y = ax2 + d . The value found for the intersection with the y axis is d = 5.50, representing the
extrapolation for n → ∞.
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Boettinger & McFadden 1993; Wang et al. 1993). It was first introduced for vesicles
and membranes by Biben & Misbah (2002, 2003) and Biben, Kassner & Misbah
(2005). This method is based on the introduction of an auxiliary field, namely the
phase field, which assumes two constant values inside and outside the vesicle (in
our case −1 and +1 respectively), and undergoes a continuous, albeit stiff enough,
variation between these values across the membrane position.

Unlike the van der Waals and phase transition problems where the phase field
represents a physical quantity (e.g. density), for the vesicle system it can, at first sight,
be viewed as a colour-like function that delimits the interior of the vesicle from the
exterior. Recently a thermodynamical formulation of the phase field for membrane
position has been proposed, although the notion of thermodynamics associated with
a membrane position is a priori not easy to imagine (see Jamet & Misbah 2007,
2008a ,b). Here we shall adopt the alternative of a colour-like function.

The phase field behaves as a tanh(r/ε) profile (where r is the position variable
across the membrane). We refer thus to the phase field as a diffuse interface model,
because the boundary region is endowed with a certain thickness ε, which is not
of atomic size (otherwise the problem would be too stiff and could not be handled
numerically within a reasonable time), but rather it is required to remain small
enough in comparison with the vesicle size and the local radius of curvature. Thus,
the thickness of the interface is artificial and does not reflect the physical thickness of
the bilayer, since here the phase field is used only for interface tracking. This results
in some conceptual and numerical difficulties, the most serious one being the need
to extrapolate the results in the limit of vanishing interface thickness (see Beaucourt
et al. 2004b). This extrapolation is not always obvious, since the dynamics is sensitive
to the value of the interface thickness.

The PF method is a field approach, i.e. the evolution equations are solved everywhere
in the bulk regardless of the position of the membrane. The presence of the vesicle
in the considered domain is expressed explicitly only in the initial condition. The
popularity of the PF approach is due to its various virtues such as (i) the possibility
to run simulations for any kind of constitutive equation for the ambient fluid (not
only linear as is required by the BI method), (ii) the absence of direct tracking of the
interface, thanks to which remeshing problems and others due to singularities over
the boundaries are avoided and (iii) simulating several vesicles requires only a change
in the initial conditions.

Let us recall the model equations initially reported in Biben & Misbah (2002, 2003).
The Stokes equations are coupled with an evolution equation for the phase field ϕ.
The latter is derived from a phenomenological free energy (which has the form of a
Ginzburg–Landau energy known for phase transition phenomena) having a double
well and a wall-like contribution. In addition, the bending force and the inextensibility
condition of the membrane (which is a proper problem to vesicles) have to be defined
everywhere in the bulk, like the phase field itself. This is detailed by Beaucourt et al.
(2004b).

The evolution equations of the PF model read:

∂u
∂t

= ∇ · [η(ϕ)(∇u + ∇uT)] − ∇P + f , (3.8)

∂ϕ

∂t
= −u · ∇ϕ + εϕ

[
−δF

δϕ
+ cε2|∇ϕ|

]
, (3.9)

∂ζ

∂t
= −u · ∇ζ + T ∇s · u, (3.10)
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where n = ∇ϕ/|∇ϕ| is the normal to the iso-ϕ lines, c = − ∇ · n is the curvature,
η(ϕ) = η0(1 + ϕ)/2 + η1(1 − ϕ)/2 is the position-dependent viscosity (this parametri-
zation allows to account for a viscosity contrast between the interior and exterior of
the vesicle), P is the pressure, and f represents the force on the membrane,

f =

[
−κ

[
c3

2
+ ∇sc

]
n + ζcn + (t · ∇ζ )t

]
δinterface(r) (3.11)

and

F =

∫
S

dA

[
1

4
(1 − ϕ2)2 +

ε2

2
|∇ϕ|2

]
(3.12)

is the free energy functional intrinsic to the phase field model. Note that the membrane
force is nothing but expression (3.4) written in the phase field spirit. The term
δinterface(r) = |∇ϕ|/2 localizes the force action around the membrane of the vesicle
(the interface of the PF) and is a diffuse version of the Dirac function. Note that
∇s · u is the surface divergence of the velocity field, T is similar to the tension-like
parameter introduced in (3.6), and has to be large enough in order to enforce the
local incompressibility of the membrane, and finally t denotes the tangent vector to
the iso-ϕ contours.

In (3.9), the term cε2|∇ϕ| has been added in order to suppress the surface tension
effect arising from the Laplacian ∇2ϕ (that stems from the functional derivative of
|∇ϕ|2) in the free energy. In fact this term, being a positive contribution to interface
energy, acts to reduce the extent of the interface as a surface tension would do. This
trick has been introduced by Folch et al. (1999), and adopted later for vesicles by
Biben & Misbah (2003). Note that this effect can also be suppressed directly from the
energy (see Jamet & Misbah 2008a), an advantage that may prove useful when using
a weak formulation for solving the equations by means of a finite element technique.

The time evolution is implemented after discretizing the space operators by
Fourier transforms (see Biben 2005). This requires periodic boundary conditions.
As a consequence, the system simulated is more appropriately an infinite periodic
system, with an infinite number of vesicles. To avoid the effect of interaction between
the vesicle and its images, we run simulations at a low volume fraction φ ≈ 2 %,
corresponding to a squared box whose side is approximately six times the linear
dimension of the vesicle. The discretization domain is a squared grid of size 200 × 200.
The number of points lying in the membrane region (the so-called diffuse interface)
is equal roughly to 160.

The effective viscosity, from which the intrinsic viscosity is deduced according to
(2.7), is computed by integrating the stress tensor over the sides of the simulation
box:

η =
1

2Lγ̇

∫
∂S

σxy dl =
1

2Lγ̇

∫
∂S

η0(∂xuy + ∂yux) dl, (3.13)

where ∂S represents the boundary of the simulation box of side L (the two sides
parallel to the gradient of the imposed shear flow do not contribute to the result due
to periodic boundary conditions). The above contribution contains both the effect of
the imposed flow and the induced contribution due to the presence of the vesicle.

3.3. Comparison between the numerical methods

The results obtained by the two numerical methods are compared in figure 4. It is
seen that the two methods show the same qualitative behaviour. However, the PF
method is sensitive to the numerical value of the interface width ε, and is expected
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Figure 4. Comparison between boundary integral (BI) at two different resolutions, N = 60
and N = 240, and phase field (PF) results (200 × 200 grid) extrapolated to ε → 0.

to provide less precise results, unless a very refined mesh is used. If the mesh is not
fine enough the PF method shows a significant quantitative deviation from BI results.
However, if a larger mesh size is allowed for the BI method, then the BI and PF
methods agree even quantitatively, as shown in figure 4. In order to achieve a high
enough precision an extrapolation of the PF results to ε → 0 is needed. Because of
the extrapolation, this method predicts a slightly negative inclination angle close to
the transition; this should be regarded as a numerical artefact. Note, however, that
small negative angles are predicted analytically in three dimensions (see Danker et al.
2007; Lebedev et al. 2008), but no support is known in two dimensions. In addition,
the presence of a bifurcation makes the task even more serious numerically, since
physical properties undergo an intrinsic rapid change in the vicinity of the bifurcation
point. As a consequence, the computation of the effective viscosity (figure 4b) in the
bifurcation region is hardly accessible, and could not so far have been determined
with a high enough degree of confidence.

4. Rheology of a suspension of vesicles
In the dilute regime, the rheological properties of a suspension can be deduced

from the dynamics of an isolated vesicle, as shown in § 2. Of particular interest
are the reduced viscosity and the reduced normal stress difference. These quantities
provide information on the viscous and the non-Newtonian behaviour of the fluid.
While the volume fraction of the suspension only plays a trivial role in the dilute
regime, the non-trivial control parameters are associated with the dynamics of the
vesicle itself: the viscosity ratio, λ≡ η1/η0, the capillary number Ca , which expresses
the intensity of the flow compared to the bending forces on the membrane, and
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Figure 5. Dynamics and rheology of a suspension of vesicles for reduced area
α ∈ {0.70, 0.90, 0.95} and a capillary number Ca = 1.0. (a) The stationary inclination angle
ψ (when a stationary solution exists), (b) the reduced viscosity [η] and (c) the normal stress
difference N as a function of the viscosity ratio λ.

the reduced area α of the vesicle. Figures 5 and 6 show the steady angle in the
tank-treading regime, the reduced viscosity and the reduced normal stress difference.
We can see a strong dependence of the reduced viscosity on λ, varied in the interval
[0.1, 200]. At low λ the vesicle motion is of tank-treading type, while at large λ
the vesicle tumbles. The minimal suspension viscosity is obtained at the critical
value λc corresponding to the bifurcation from tank-treading to tumbling. A detailed
discussion of these behaviours is provided in 4.1, while in § 4.2 the normal stress
difference is analysed. Although we shall mainly consider the λ dependence, the two
other parameters α and Ca are expected to play a role as well. We show in figures 5
and 6 the influence of α, by considering values ranging from α = 0.70, quite elongated
vesicles, to α = 0.95 for nearly circular shapes (see figure 7). We can see that the
influence of α is only quantitative, the qualitative behaviour is preserved. Section 4.3
provides a detailed analysis of rheology in the tumbling regime. The influence of Ca

will be discussed in § 4.4. In § 4.5 a detailed comparison with drops is drawn. Section
4.6 is devoted to the comparison to three-dimensional results, both analytical and
experimental.

Note that these results have been obtained using the BI method for two-dimensional
vesicles. As a consequence, in principle, these results have to be compared to two-
dimensional theories. An analytical solution for the velocity field in two dimensions
has been provided recently by Finken et al. (2008). We have used this solution and
attempted to derive the effective viscosity. However, the result shows a significant
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Figure 6. Dynamics and rheology of a suspension of vesicles for different reduced areas α
and capillary numbers Ca . (a) The stationary inclination angle ψ (when a stationary solution
exists), (b) the reduced viscosity [η] and (c) the normal stress difference N as a function of the
viscosity ratio λ.
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Figure 7. Stationary shapes of vesicles for different reduced areas α and a capillary number
Ca = 1.0. For more elongated vesicles (smaller α) the tumbling to tank-treading transition
occurs for smaller values of the viscosity ratio λ.

difference with the expected intrinsic viscosity in the circular limit (which is equal to
2). It is likely that that paper suffers from some typing mistakes.

The reduced suspension viscosity of quasi-circular vesicles (α = 0.95) approaches
the value 2.0 in the two extreme limits, λ→ 0 and λ → ∞, as shown in figures 5(b) and
6(b). The three-dimensional analogue approaches the value 2.5 (see Danker & Misbah
2007; Danker et al. 2007) for quasi-spherical vesicles. These two values turn out to be
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equal to the Einstein coefficients in two and three dimensions, representing the effective
viscosity of a dilute suspension of rigid circles or spheres (see Einstein 1906, 1911;
Belzons et al. 1981; Brady 1984) respectively. The fact that the effective viscosity of
rigid particles quantitatively depends on the spatial dimensions is also manifested by
a vesicle suspension. This observation allows us to attempt a quantitative comparison
between the results of two and three dimensions thanks to a simple rescaling of the
data (§ 4.6).

4.1. The effective viscosity

The effective viscosity of a suspension of vesicles has a complex behaviour, strongly
dependent on the microscopic dynamics. When plotted as a function of the viscosity
ratio (figures 5b and 6b), [η] shows a nonlinear and non-monotonic behaviour. We
shall first consider the two limiting cases λ→ 0 (small internal rigidity) and λ→ ∞
(high internal rigidity). As already pointed out, the intrinsic viscosity approaches the
value of the Einstein coefficient in two dimensions, 2.0, in both limits, provided that
the shape is quasi circular (α =0.95). For λ→ 0 this result is not quite surprising.
Indeed, at low values of λ the vesicle performs tank-treading motion, and if its shape
is close to a circular one (α = 0.95) its motion is close to that of a rigid rotation of a
circle. The limit λ→ ∞ is somehow less trivial at first sight. The vesicle undergoes a
periodic tumbling motion and thus changes periodically its orientation. However, for
a quasi circular shape, a tumbling motion is quite close to a tank-treading motion (a
circle is a degenerate limit where tank-treading and tumbling coincide (see Rioual,
Biben & Misbah 2004). In conclusion, the fact that [η] approaches the value 2 in
both limits (large and small λ) seems to have the same origin.

The limiting values of the effective viscosity (i.e. at λ= 0, ∞) depend on the reduced
area α. For λ=0 [η] decreases upon decreasing α. This effect is not trivial, since the
cross-section of the vesicles in the flow, which may be considered as an indicator of
flow resistance, does not vary noticeably (actually it even increases slightly, figure 7).
The key point to explain this effect is that upon reducing α the vesicle has a more
elongated shape, a fact that reduces the deformation of the flow lines, and thus lowers
dissipation. At large λ this effect is reversed, figure 5(b). That is to say the elongation
of vesicles (due to a decrease of α) leads to an increase of [η]. This means that the
disturbance of the flow lines, and hence the effect on dissipation, due to the tumbling
vesicle on the imposed velocity field is stronger and stronger. A detailed analysis of
the intrinsic viscosity in the tumbling regime is provided in § 4.3.

The same behaviour is obtained analytically in three dimensions: the intrinsic
viscosity decreases with ∆, the excess area from a sphere – increasing ∆ is equivalent
to reducing the reduced volume – in the λ→ 0 limit (where it lies below the Einstein
value), whereas it increases for λ→ ∞, where [η] exceeds slightly the Einstein value
(Danker & Misbah 2007; Danker et al. 2008).

In the tank-treading regime [η] is a decreasing function of λ. The reason is as
follows: by increasing λ the inclination angle with respect to the flow decreases, and
thus the vesicle opposes less resistance to the flow (see figures 6a, b and 7). A detailed
analysis of this phenomenon is given in § 4.5.

Let us provide further physical explanations to the above results. We have seen
that after the transition to tumbling the effective viscosity (averaged over a period)
increases with λ (see figure 6b). The key ingredient is that, on average, in the tumbling
regime the vesicle scans a larger cross-section against the flow, and this results in
an enhanced resistance to flow compared to tank-treading. In addition, despite the
existence of a bifurcation, [η] is continuous at the TT–TB point and exhibits a
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Figure 9. Tumbling frequency ω for vesicles with α = 0.9 and Ca =1.0 as a function of λ. The
results (obtained from BI) have been extrapolated to the limit n → ∞. The thick horizontal
segment on the extreme right represents the TB frequency for a rigid ellipse having the
same α.

minimum. The vesicle spends, close to the transition point, and on the TB side, most
of its time aligned with the flow, and makes a rotation by an angle close to π in a
small time interval. This is visible in figure 8 where we show the inclination angle as a
function of time with parameters chosen both close to the tumbling bifurcation point
(λ= 5.60, λc = 5.55) and far away from this point (λ= 10.0). The continuous decrease
of the relative time spent in the flow-aligned position is the main reason why [η]
increases continuously upon increasing λ in the vicinity of the bifurcation point, i.e.
for λ	 λc. As λ increases beyond λc, the TB frequency increases towards the value of a
rigid ellipse (figure 9), which can be computed analytically (see Keller & Skalak 1982):

ωR =
γ̇

π

(
a

b
+

b

a

)−1

, (4.1)

where a and b are the lengths of the small and large axes of the ellipse. For an ellipse
with a reduced area α = 0.90 and for a shear rate γ̇ = 1.0 we have ω ∼= 0.138, which
is very close to the value found here for a nearly rigid (λ= 200) vesicle with the same
reduced area α = 0.90 and at a capillary number Ca =1.0 (see figure 9).

More recently, an analytical expression for the reduced viscosity in three dimensions
in the TB regime has been reported (see Vitkova et al. 2008). This expression is valid
at small enough Ca where the assumption of a shape-preserving solution is expected to
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make sense. The analytical expression agrees qualitatively well with the full numerical
calculation (figures 6 and 20), in that it shows a square root singularity at the TT–TB
point (on the TB side). To be more precise, a fit of the reduced viscosity in the
tumbling regime close to the transition with the function [η] = ηc + a(λ − λc)

b gives
an exponent b ≈ 0.4, which, although slightly different from the theoretical prediction
in three dimensions (it is 0.5), is still consistent with a vertical tangent for λ= λc.

Note that some features of the three-dimensional analytical work are not captured
by the present simulations, however. Indeed, in three dimensions the cusp singularity
exhibited by [η] at low enough Ca is smeared out at large enough Ca (see Danker
et al. 2007). In contrast, in the present simulation the cusp is preserved even at
high enough Ca . We believe that this behaviour is linked with the fact that in three
dimensions a third dynamical regime, called vacillating-breathing (or swinging) is
observed (see Kantsler & Steinberg 2006; Misbah 2006; Danker et al. 2007), while
in the two-dimensional case there is no support to its existence, at least as long as
thermal fluctuations are not taken into account; see Messlinger et al. (2009). As a
consequence, the inclination angle does not show a square root singularity at the
tumbling threshold, in contrast with the present two-dimensional simulations where
this singularity survives. We believe that the cusp exhibited by [η] is directly linked
with the behaviour of the inclination angle.

The first conclusion that can be drawn is that, besides the VB mode, the dynamics
and rheology of a vesicle in two dimensions are qualitatively similar to their three-
dimensional analogues. The presence of the VB mode in three dimensions suppresses
the cusp singularity in the behaviour of the effective viscosity at large enough Ca

but does not affect the overall qualitative behaviour. These results support the fact
that two-dimensional simulations are capable of capturing several essential physical
properties. When these simulations fail to explain a given feature found in three
dimensions (the only situation encountered so far is the suppression of the cusp
singularity) it has even been possible to provide a basic reason, and thus to provide
to the two-dimensional work a robust status.

4.2. The normal stress difference

We have analysed the behaviour of the normal stress difference N , and linked it to
the vesicle dynamics (figure 6). N decreases during tank-treading upon increasing the
viscosity ratio. At the critical point N vanishes and remains zero in the tumbling
regime (figure 5c).

This behaviour of the normal stress difference is more difficult to interpret than the
effective viscosity. Here again, the incompressibility of the membrane is an essential
ingredient, but it enters in a quite subtle way.

In fact, the direct effect of the incompressibility of the membrane is the generation
of a tangential force. The curvature of the membrane introduces a normal component
too, as can be seen in (3.4). The normal force is a combination of bending rigidity
and the Lagrange multiplier ζ . Actually, the main source giving rise to normal stress
difference comes from ζ . This can be shown by analysing the force field over the
membrane. In fact, in a flow that is antisymmetric (with respect to the centre), the
inextensibility force, which is a response to the flow action, has to be antisymmetric too.
This antisymmetry is exhibited by the total force field on the membrane represented in
figure 1, showing that the tension component dominates over the bending one (which
is symmetric). If we apply (3.7) for the normal components σxx and σyy , we see that
the (antisymmetric) force is multiplied by the (trivially antisymmetric) position vector,
thus giving symmetric contributions that do not then cancel out when integrated over
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the membrane of the vesicle. Thus, a non-zero normal stress difference is compatible
with the symmetry of the problem in the stationary tank-treading regime.

The normal stress difference drops to zero when the vesicle is at the transition
between tumbling and tank-treading (at the transition a tank-treading vesicle has
its main axis parallel to the flow). This is due to the additional mirror symmetry:
the vesicle exhibits, at the critical point, an up-down symmetry as well as rear-front
symmetry, resulting in a vanishing normal stress difference.

4.3. Instantaneous stress in the tumbling regime

In the previous sections when referring to vesicles in the tumbling regime we have
only presented rheological quantities that have been averaged over a period. We
would like to analyse the time dependence of stress, from which we may extract
the analogues of effective viscosity (that may be called instantaneous viscosity) and
normal stress difference. It must be stressed that, from a theoretical point of view,
the way this quantity is defined is similar to the classical definition of the effective
viscosity, by using the Batchelor formula (3.7). Thus this definition is not ambiguous,
and can be called instantaneous viscosity. Of course, one has to keep in mind that
in traditional rheological experiments only an average over time would make sense,
due to the uncorrelated dynamics of the vesicles (in the dilute regime) in the sample.
Nevertheless, measuring the instantaneous variation of the stress tensor due to a single
vesicle can be performed without ambiguity. Moreover, the notion of instantaneous
stress is not only of a fundamental interest but is also experimentally measurable
with the advent of microfluidic devices and nanoelectromechanical systems (NEMS).
These devices are nowadays capable of measurements with high time resolution on
fluid samples with a volume smaller than a microlitre (see Boskovic et al. 2002;
Willenbacher & Oelschlaeger 2007). Sensing the disturbance of the stress by the
presence of a vesicle seems to lie within the precision of experiments. However, the
measure would not necessarily reflect the value of an average stress, since the probe
sees the medium as a continuum. Nonetheless, the presence of a vesicle will disturb
the medium, and should have an affect. This question should deserve an analysis
under close scrutiny in the future. Our main objective is basically to draw attention to
the fact that measurement on such small scales may become quite feasible in the near
future. The question addressed here may help triggering future experimental research
along this direction.

Figure 10 shows snapshots of a tumbling vesicle and figure 11 shows the time
dependence of its inclination angle, reduced viscosity and normal stress difference.
The capillary number is set at Ca = 1.0, but note that all the features discussed
in the following are also exhibited at Ca =10.0. The behaviour of both effective
viscosity and normal stress difference is highly nonlinear and exhibits maxima and
minima. This feature, found here numerically, was also briefly reported analytically
in three dimensions (see Danker & Misbah 2007). A surprising feature is that the
effective viscosity exhibits two minima within each tumbling period. A convenient
representation that lends itself to a simple interpretation of the results is to plot
these quantities as functions of the inclination angle, rather than time, as shown in
figure 12. Note that the vesicle orientation is defined modulo π (and not 2π), owing
to central symmetry. Here we see clearly that the two maxima of dissipation occur
at the inclination of ±π/4. Let us recall that a linear shear flow can be written
as a superposition of pure rotational and elongational components; elongation is
oriented at ±π/4 (see Rioual, Biben & Misbah 2004) with respect to the imposed
flow direction, as sketched in figure 13. Only the elongational component (that



506 G. Ghigliotti, T. Biben and C. Misbah

t = 1.0 τc t = 5.0 τc t = 6.5 τc t = 7.5 τc t = 8.5 τc t = 11.0 τc

Figure 10. Tumbling of a vesicle in a linear shear flow. λ= 8, α = 0.9 and Ca = 1.0.
Snapshots are taken at irregular time intervals for illustrative purposes.
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Figure 11. Dynamical and rheological quantities in the tumbling regime: (a) inclination angle
ψ , (b) reduced viscosity [η] and (c) normal stress difference N as a function of time. α = 0.9,
λ=8 and Ca = 1.0.

corresponds to the symmetric part of the shear flow) generates dissipation, while the
pure rotation corresponds to rigid-body rotations, which do not involve dissipation.
The occurrence of two maxima at the orientation ±π/4 is due to the maximal strain
efficiency in these directions of the dissipative component of the imposed flow on the
vesicle. It must be stressed that these maxima are not due to the deformation of the
vesicle itself, since they survive even for nearly rigid vesicles (λ= 200).

The viscosity is minimal when the vesicle aligns with the flow (ψ = 0), a somehow
trivial effect in the light of the previous discussions. Perhaps, the most astonishing
and quite counterintuitive effect is the appearance of a minimum of the viscosity
for the vertical position (i.e. ψ = ± π/2): our understanding of this result is that
the streamlines of the rotational and elongational components of the flow field are
parallel to each other (see figure 13), so the competition between the tendency to
rotate and strain the vesicle is reduced to a minimum.

The interpretation of the normal stress difference in the periodic regime is at present
not completely understood and merits higher attention in the future. Suffice it here
to remark (figure 12) that the zeros of the normal stress difference coincide with the
extrema of the effective viscosity.
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Figure 13. Decomposition of the linear shear flow into pure rotational and elongational
components.

4.4. Dependence on shear rate

We have analysed the behaviour of a vesicle suspension upon increasing the shear
rate γ̇ . Two series of simulations have been performed, with capillary numbers
Ca =1.0 and Ca = 10.0. Vesicles with different reduced areas have been considered:
α ∈ {0.70, 0.90, 0.95}. The results are reported in figure 6. It can be seen that the
sensitivity on the shear rate depends on the reduced area of the vesicle: in the cases
α ∈ {0.90, 0.95} there seems to be no significant dependence upon variation of this
parameter. Contrariwise, for smaller α, α = 0.70, both dynamics and rheology show
significant variations because of shear rate (or because of Ca). It is found that upon
increasing Ca the transition boundary between tank-treading and tumbling is shifted
towards higher values of λ. This effect is traced back to the increase of deformability
of the vesicle for significantly deflated vesicles (α = 0.70), a fact that is quite invisible
for weaker deflation (i.e. for nearly circular shapes), owing to membrane inextensibility
(figures 14 and 15). In addition, a decrease in [η] is observed in the tumbling regime.

A vesicle suspension can show then a shear thinning behaviour if vesicles are
sufficiently deflated. In addition, if their viscosity ratio is close to the critical value λc,
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λ = 0.1 λ = 1 λ = 2 λ = 3 λ = 4

Figure 14. Stationary contours of tank-treading vesicles (α =0.7) at Ca = 10.0 (solid line)
compared with the corresponding ones at Ca = 1.0 (dashed line) for different values of the
viscosity ratio λ (for λ= 4.0 and Ca = 1.0 there is no tank-treading solution).

ψ = 0 ψ = 3/4 π ψ = π/2 ψ = π/4

Figure 15. Contours of a tumbling vesicle (α = 0.7 and λ= 20.0) at Ca = 10.0 (solid line)
compared with the corresponding ones at Ca = 1.0 (dashed line) for different values of the
inclination angle ψ .

a dynamical transition can occur upon variation of the capillary number Ca , affecting
even more the effective viscosity: this is shown in figure 16. This complex rheological
behaviour (shear thinning triggered by deflation and dynamical transition) contrasts
with the case of emulsions, which always show shear thinning (see Kennedy et al.
1994; Pal 2000). Drops always deform upon increasing the applied shear but they do
not undergo dynamical transitions (except for the possible burst).

Note that the normal stress difference N is normalized in the present paper with the
factor η0γ̇ . This contrasts with the conventional notation (used for emulsions, polymer
solutions, and so on) N/η0γ̇

2. It can be checked that the latter is not dimensionless,
and its use in literature is dictated by the fact that for a large variety of suspensions
of deformable objects N ∼ γ̇ 2. In these systems, the quadratic behaviour is due to
the presence of an internal (or intrinsic) time scale that depends on γ̇ . This time
scale corresponds to the deformation (elongation) of the suspended entities, which is
proportional to γ̇ . For vesicles, because of the inextensibility of the membrane, there
is a weak dependence of the shape on γ̇ (see figure 14), and the vesicle elongation
quickly attains a saturation regime. Thus, we view the absence of an intrinsic time
scale proportional to γ̇ (see Larson 1999, pp. 418–419), to be the source for the linear
behaviour of N with γ̇ (see also Danker & Misbah 2007 for analytic derivation in
the small deformation limit).

4.5. Comparison with drops

Since a vesicle is a droplet enclosed in a phospholipidic membrane, a comparison with
emulsion rheology will provide valuable information on the role of the membrane.
Drops and vesicles are distinctly different systems: (i) drop interface is governed
by tension, which resists area increase, while the vesicle membrane is controlled by
resistance to bending, and (ii) the drop can change its area, while a vesicle is subject
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Figure 16. Dynamics and rheology of a vesicle with α = 0.7, λ= 4.0 as a function of the
capillary number Ca . (a) Stationary inclination angle ψ , (b) reduced viscosity [η] (showing
shear thinning) and (c) normal stress difference N .

to local membrane inextensibility. The latter property is the most serious ingredient
to be emphasized in what follows.

The first difference between vesicle and drop rheology can be obtained by comparing
the analytical expressions derived for three-dimensional spherical drops (see Taylor
1932; Frankel & Acrivos 1970) and quasi-spherical vesicles in the tank-treading
regime (see Misbah 2006; Danker & Misbah 2007):

η

η0

= 1 +
5

2
φ

(
1 − 3

5(λ + 1)

)
for drops, (4.2)

η

η0

= 1 +
5

2
φ

(
1 − ∆

40π
(23λ + 32)

)
for vesicles, (4.3)

where ∆, a small parameter in (4.3), is the excess area from a sphere, related to the
reduced volume ν – the three-dimensional analogue of α – via ∆ =4π(ν−2/3 − 1). By
definition, ν ≡ [V/(4π/3)]/[A/(4π)]3/2, where V is the volume and A is the area of the
membrane, and A= r2

0 (4π + ∆). While expression (4.2) is an increasing function of λ,
i.e. the effective viscosity increases with the internal viscosity of the drop, (4.3) is on
the contrary a decreasing function of λ for tank-treading vesicles. This shows that the
phospholipid membrane has a significant effect on the rheology of the suspension.
Note that (4.2) is obtained by assuming that the drop is spherical. Of course, under
shear flow the drop will always deform, but the overall behaviour of the viscosity
predicted by Taylor remains essentially the same – provided that the deformation
is small enough (see Frankel & Acrivos 1970; Kennedy et al. 1994). Therefore, it is
reasonable to compare (4.2) with (4.3), which is obtained for a small deformation
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Figure 17. Comparison between drop and vesicle suspensions: (a) inclination angle ψ in the
stationary regimes and (b) reduced viscosity [η] of a suspension of vesicles (data and guideline)
and of a suspension of drops. The data refer to a vesicle of a reduced area α = 0.9 and to a
drop in a flow having a capillary number Caγ

=0.3.

relative to a sphere (for a sphere a vesicle behaves as a rigid particle because of
membrane incompressibility).

An exhaustive analysis of drop dynamics and rheology can be found in Kennedy
et al. (1994), here we shall exploit our own simulations in order to present a clear
comparison, focusing on the dependence on the viscosity ratio λ. For this purpose,
we have found it more convenient to use the PF model. Indeed, this method delivers
directly the velocity field in the whole numerical domain. The analysis of this field
will allow us to shed light on the interpretation of the rheological results. Note that
the bulk velocity field can be computed within the boundary integral method as well,
but this requires some additional numerical treatments.

We define the drop capillary number as Caγ
= η0γ̇ R/γ , where γ is the surface

tension of the drop, and R is its radius of the equivalent circle. We fix the value
of the surface tension of a drop in such a way that the drop shape remains as
close as possible to that of the vesicle with reduced area α = 0.9 (figure 18). The
estimated value of the surface tension that fulfils this requirement yields Caγ

= 0.3.
On the other hand, drops tend to become more circular upon an increase of λ
(figure 19). The behaviours of the reduced viscosity as a function of the viscosity ratio
λ for a suspension of vesicles and for an emulsion are quite different (figure 17). A
comparison of the two behaviours in the range of λ, where both the vesicle and the
drop exhibit a stationary shape (i.e. within the tank-treading regime of the vesicles;
we consider a low capillary number so that drops maintain their integrity), reveals the
same trend difference of (4.2) and (4.3): the reduced viscosity increases for emulsions
while it decreases for vesicle suspensions upon increasing λ. A key point in order
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Figure 18. A drop (capillary number Caγ
= 0.3) and a vesicle (reduced surface α = 0.9,

capillary number Ca = 1.0) and their corresponding velocity fields (crop of the central region
of the simulation box).

to understand this difference lies in the inspection of the velocity fields around the
suspended entities (figure 18).

For a two-dimensional vesicle, the conservation of the local length of the membrane
leads to the constraint of uniform velocity around the membrane itself, while the
absence of this constraint for drops allows for a non-uniform velocity.

For a vesicle, the perturbation to the velocity field is enhanced further when it
occupies a larger section in the direction of the velocity gradient, that is when the
orientation angle ψ is large. Since ψ is a decreasing function of λ (figure 17a),
dissipation is also a decreasing function of λ and consequently the effective viscosity
too. This explains the decline of the viscosity in the tank-treading regime; figure 6(b).
Note also that this effect should be more pronounced for more elongated vesicles
(smaller reduced area α), because with the same variation of λ the decline of the tank-
treading angle (figure 6a) and of the cross-section of the vesicle in the direction of the
gradient of the imposed flow (figure 7) are higher. This simple physical interpretation
agrees well with the numerical results, which reveal stronger variations of the reduced
viscosity for smaller α (figure 6b).

The situation with drops is quite different. Note that both the drop and vesicle
orientation angles decrease with λ (see figure 17). Nevertheless, in the former case
the viscosity increases with λ while the opposite is found in the latter case. A close
inspection of both the velocity field and the precise deformation of the drop will be
essential to clarify this difference. The viscosity ratio plays a central role and, unlike
vesicles (characterised by membrane inextensibility), no constraint is directly imposed
on the velocity field by the drop surface. For a drop, increasing internal viscosity means
decreasing its deformability. The consequences are twofold: (i) the drop assumes a
more circular shape (and thus, unlike vesicles, the cross-section in the direction of
the flow gradient does not vary noticeably, as can be seen in figure 19a) and (ii)
the perturbations caused by a drop on the imposed flow, which are not limited by
any surface incompressibility condition, lead to ample enough velocity gradients (and
thus to increase of dissipation) close to the surface. This simple argument highlights
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Drops Vesicles

(a) (b)

Figure 19. Steady contours of (a) drops and (b) vesicles. For the drops the capillary number
is Caγ

= 0.3 and the viscosity ratio 1 � λ� 15 (increasing in the sense of the arrow). For the
vesicles the capillary number is Ca =1.0 and the viscosity ratio 1 � λ� 7 (increasing in the
sense of the arrow). Snapshots are from the PF method.

the central role played by the membrane of the vesicle: not only is the membrane
responsible for the various complex dynamics of the vesicle but it also induces a
peculiar rheological behaviour. Finally, in the analytical theory to leading order, it is
the incompressibility condition for the membrane that controls rheology, and not the
bending energy (see Danker & Misbah 2007).

4.6. Comparison with three-dimensional experiments and theory

While the present study is focused on two dimensions, it may be worthwhile to attempt
a comparison of our results with the available three-dimensional analytical theory and
with experiments. Note that before comparing two- and three-dimensional intrinsic
viscosities, a preliminary rescaling has to be performed, as dictated by the different
values of the Einstein coefficients in two and three dimensions (i.e. we shall attempt
the comparison after multiplying two-dimensional data of the intrinsic viscosity by
a factor 2.5/2). In addition, we have to convert a reduced volume ν (corresponding
to three dimensions) into a reduced area α (defined in two dimensions). Since a two-
dimensional vesicle corresponds to a translationally invariant form in the direction
perpendicular to the shear plane, a natural choice is to consider the maximum section
in the shear plane for the three-dimensional vesicle, compute the corresponding
reduced area of this section, and then compare it to α.

Once the above preliminary rescaling and conversion are made, we compare the
results with those obtained analytically by Danker et al. (2007); see figure 20. We
focus on the analytical results with ∆ =0.25 (i.e. ν ∼= 0.97 – the value is chosen close
to that of a sphere so that the analytical theory is expected to be quantitative),
and Ca =1.0. Using the conversion rule discussed above, we find ν = 0.97 ↔ α =0.95.
The quantitative agreement between two-dimensional numerical data and three-
dimensional analytical results is quite satisfactory. It is interesting to note how the
numerical results for Ca = 1.0 compare surprisingly well with the analytical ones at
Ca = 10−2. This can be traced back to the fact that the presence of the VB mode in
three dimensions can be suppressed for Ca = 10−2 and this has the effect of improving
the agreement between two and three dimensions. Note that since for such values of
α the results are found to be quite insensitive to Ca (figure 6), taking a smaller value
of Ca has as a main effect the suppression of the VB mode and not insignificant
alteration of other quantities.
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Figure 20. Three-dimensional theory (∆=0.25) from Danker et al. (2007) compared with
rescaled two-dimensional results of the present work (α =0.95). Reduced viscosity [η] as a
function of the viscosity ratio λ.

The comparison with experiments (see Vitkova et al. 2008) reported in figure 21
is somehow difficult, due to vesicle polydispersity (0.9 � ν � 1.0), and to finite
volume concentration (3 % � φ � 12 %) of the samples. If we take α =0.90 we find
the corresponding three-dimensional reduced volume to be ν = 0.94 (a value close to
the average experimental one). We also rescale our values of the intrinsic viscosity, as
explained above. The agreement is partially satisfactory.

5. Conclusion and discussion
We have carried out systematic and quantitative numerical simulations in two

dimensions for a dilute suspension of non-interacting vesicles. We have drawn
a link between microscopic dynamics and macroscopic rheology, both for the
stationary (tank-treading) and for periodic (tumbling) vesicle motions. The central
role played by the membrane inextensibility in the rheological behaviour has been
clearly demonstrated, and major differences with emulsions have been identified and
interpreted. Shear thinning effects have been found and explained in the light of
deformation and dynamical transition of the vesicles.

It was not at all obvious at the beginning of this study that the two-dimensional
model would capture the main characteristics of the physics, and in particular of the
rheology. This is quite encouraging, since it opens the way for extensive calculations
for more concentrated suspensions, which are by now quite difficult to handle in three
dimensions (due to the large computing time). For example, we are not aware of
any three-dimensional numerical simulations based on the BI method that analyses
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Figure 21. Reduced viscosity [η] as a function of the viscosity ratio λ. Experimental values
from Vitkova et al. (2008) are compared with the present work.

quantitatively the full phase diagram (TT, TB and VB) of even a single vesicle under
a simple shear flow.

The peculiar behaviour of effective viscosity with the viscosity ratio λ, together
with the difference in rheology of emulsions, highlights the non-trivial character of
the physics associated with the membrane. Stimulated by recent works on rheology
(Misbah 2006; Danker & Misbah 2007), experiments have been carried out by
two groups recently (Kantsler et al. 2008; Vitkova et al. 2008). At low vesicle
volume fraction (about 5 %) the results obtained by both groups agree with the
prediction of Misbah (2006); Danker & Misbah (2007) and with the present numerical
simulation. The agreement is both qualitative and quantitative. At higher volume
fraction ( > 10 %), the result of Kantsler et al. (2008) reports that at small enough
λ (about 0.2) the effective viscosity decreases when decreasing λ, in which there
should be deviation from theory. The authors attribute this behaviour primarily to
hydrodynamic interactions. The experiments of Vitkova et al. (2008) performed for
the same range of volume fractions did not show the tendency observed by Kantsler
et al. (2008), a problem that remains a matter for debate. It would be an interesting
task for future numerical simulations to show how does the effective viscosity evolve
with λ (and with possibly other parameters) when volume fraction is increased. We
hope to investigate this matter further in a future paper.

Finally, it must be stressed that red blood cells have often been modelled as elastic
capsules (see Eggleton & Popel 1998; Pozrikidis 2003; Bagchi, Johnson & Popel
2005; Lac, Morel & Barthès-Biesel 2007; Mauroy 2008; MacMeccan et al. 2009).
Some rheological studies have been made regarding the shear thinning effect (see
Drochon 2003) of red cells. These studies do not implement local inextensibility
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of the membrane, as done here. Red blood cells are inextensible and exhibit shear
elastic properties due to cytoskeleton. It is reported in literature (see Evans, Waugh &
Melnik 1976) that red blood cells can be stretched up to 5 % before bursting.
At a small applied stress the stretching may be due to thermal smoothening of
membrane fluctuations (entropic elasticity), and then only when the stress is close to
that of cohesive forces that a red cell may reach the rupture threshold. For stresses
encountered under ordinary shear rates only entropic elasticity, not included here,
may play a role, albeit the precise parameter range when entropy is essential needs to
be clarified. We believe that shear elasticity of red cells should be more important than
the entropic one, and it would be an interesting task for future work to deal with this
question. Nevertheless, it can be stated that if shear elasticity is implemented in the
theoretical model of vesicles (see Danker & Misbah 2007), as done for capsules (see
Barthès-Biesel & Rallison 1981), then to leading order the effect of membrane shear
elasticity scales out of the rheological equations, precisely as does bending rigidity (see
Olla 2000). If, on the contrary, the membrane is supposed to have a shear pre-stress,
then dynamics and rheology might be affected by membrane elasticity. It will be an
interesting task for future investigations to elucidate this question further. This step
is essential before making an attempt to compare rheology of vesicle suspension with
that of red blood cells.

We are grateful to Alessandro Siria for fruitful discussion and to Alexander Farutin
for assistance. We acknowledge financial support from Centre National d’Etudes
Spatiales (CNES) and Agence Nationale de la Recherche (ANR MOSICOB).
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